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V. On the Vibrations and Stability of o Gravitating Planet.

By J. H. Jeaxs, B.A., Isaac Newton Student, and Fellow of Trinity College,
Cambridge.

Communacated by Professor G. H, DArRWIN, F.R.S.
Received November 8,—Read December 4, 1902.

Introduction.

§ 1. In a former paper® I have considered the effect of gravitation as a factor tending
towards instability, in the case of a spherical nebula of gas. The object of the present
paper is to investigate the analogous problem in the case of a spherical planet, the
planet being supposed composed of solid or fluid matter. The main question at issue
is the following.

§ 2. So long as gravitation is neglected there can be no doubt as to the stability of
an elastic solid ; any displacement increases the potential energy, and. an unstressed
configuration of equilibrium is therefore necessarily stable. But when gravitation is
taken into account, the gravitational energy may be either increased or decreased by
a displacement from equilibrium, and if a displacement can be found which effects a
decrease in the gravitational potential energy of amount sufficient to outweigh the
increase in the potential of the elastic forces, then the equilibrium configuration will
be unstable.

Now, in § 2 of the previous paper already referred to, it was shown that for any
spherical body displacements can be found such that there is a decrease in the
gravitational potential. This is sufficient to prove that a spherical configuration of
equilibrium may be unstable.

In the terminology of PoiNcarfT it appears that on any ¢ linear series” of
spherical configurations there may be  points of bifurcation.”

We must, therefore, attempt to settle the position of these points of bifurcation.

- In particular, it will be of interest to examine whether a sphere of the size and
material of the earth may be regarded as being anywhere in the neighbourhood of a
point of bifurcation.

* «The Stability of a Spherical Nebula,” ¢ Phil. Trans.,” A, vol. 199, p. 1.
T ¢ Acta, Math.,” vol. 7, p. 259,

VOL. CCL.—A. 335, 4.4.03
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158 MR. J. H. JEANS ON THE VIBRATIONS AND

Prelimanary Approximation.

§ 8. A rough and very simple calculation will give an approximate answer to this
latter question.

Let @ be the radius of a sphere, which will ultimately be taken to be the earth,
M its mass, and p, the mean density given by M = %4wp,c®

Let us use the elastic constants \; u,* and let A, be the mean value of \. Since
the sphere is supposed to be spherically symmetrical, A, u, and p will be functions of
the single co-ordinate », the distance from the centre. Imagine M/Ay, p/A,, and p/p,
each expressed as functions of »/a, and let ¢, ¢,, . . . be the coeflicients which occur
in these functions, these coefficients being mere numbers and independent of the
system of units in which X\, p, and & are measured.

Imagine a linear series of equilibrium configurations obtained by varying any one
of the quantities A\, p,, or @, while keeping the remaining two quantities and the
coefficients ¢, ¢,, . . . constants. The points of bifurcation on this series will occur
when the varying parameter becomes equal to some definite function of the remaining
quantities and of y, the gravitational constant.

Hence, however the linear series are arrived at, the points of bifurcation will be
given by an equation of the form

Sy, N, pos @y €1, Cop oo ) =00 . . . . . . . (1)

Now the coefficients ¢y, ¢y, . . . are mere numbers, and the only way in which v,
A and « can be combined so as to give a mere number is through the term
0> Pos S
vpo*e*/N,.  Hence equation (1) can be expressed in the form

242
f<m,cl,cg,...)=0 Ce e e e (2)
Ao /

We have seen that the spherical configuration must be unstable for some values of
Y, Po> &, and X (e.g., it is always unstable for yp,a®/\, = =), hence equation (2) must
have at least one real root between yp*a®/A; = 0 and yp,’a?/\; = . Let the lowest

root be
yplr N = . . . . . . . . . . (3),

where ¢ is a function of ¢, ¢,, . . . ; then a spherical configuration is stable so long as
vpo*a*/N, < ¢, and becomes unstable as soon as yp,2a’/N; > ¢.

The coefficients ¢,, c,, . . . will, on the average, be comparable with unity, because
X, p are referred to their mean values; they are as likely (speaking somewhat loosely)
to be above as to be below unity. Hence ¢ itself will be comparable with unity, and

* The notation is that of LovE’s ¢ Theory of Elasticity.” The m, n of THOMSON and TAIT are given

by
At opo=m, no= 1
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STABILITY OF A GRAVITATING PLANET, 159

it is not at present possible to say whether it is more likely to be greater or less
than unity.
§ 4. Now, in the case of the earth (THOMSON and Tarr, § 838), we have

a = 640 X 10% centims., py = 53,
and the value of y in C.G.8. units is known to be
y = 648 X 10710,

This gives for yp,*a® the value

ypoia? = 8 X 10,

whence it appears that for a sphere of the size and mass of the earth the spherical
configuration will be unstable unless N\ has a value comparable with 8 X 101

Now for steel (¢f. THOMsON and TAIr, p. 435) the values of the elastic constants in
absolute wunits are 7 = pu = 77 X 10", m = X4 p = 160 X 10!, whence
A = 83 X 10", We therefore see that the critical values of the elastic constants in
the case of the earth are comparable with those of steel.

The foregoing calculation is, of course, very rough, but it shows that the critical
values for the earth are at least in the neighbourhood of what must be supposed to be
the actual values, so that we are driven to attempting a more accurate determination
of these values. If the view of the present paper is sound, this approximate equality
is more than a mere coincidence ; we shall see that it could have been predicted from
our hypotheses of planetary evolution.

We now attempt a rigorous mathematical investigation of certain problems which
have a bearing upon the astronomical questions in hand. Those readers whose
interest lies in the application of the results rather than in the processes by which
they are obtained may be recommended to turn at once to § 22.

Tae STABILITY oF A GRAVITATING Erastic SoLip.

The Equations of Small Vibrations.

§ 5. We shall begin by discussing the principal vibrations and the frequency
equation of a spherically symmetrical solid. The case of a non-gravitating sphere
has been fully discussed by Professor Lams,* but the inclusion of the gravitational
terms, as will be seen later, brings about a considerable complication in the analysis.
The case of a gravitating but incompressible sphere has been considered by
BromwicH, i but this has no bearing on the present problem, in which the whole

* «On the Vibrations of an Elastic Sphere,” ¢ Proc. Lond. Math. Soc.,” vol. 13, p. 189.
t “On the Influence of Gravity on Elastic Waves, &e.,” ¢ Proc. Lond. Math. Soc.,’ vol. 30, p. 98.
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160 MR. J. H. JEANS ON THE VIBRATIONS AND

interest turns upon the compressibility. The solution which follows is, in its main
points, very similar to that of Professor Lams, so that I have not thought it
necessary to give the steps of the argument in great detail.

From the symmetry of the solid it follows that the elastic constants A, u, and the
density p, will be functions of the single co-ordinate #, the distance from the centre.
Taking the centre as origin, we shall use rectangular co-ordinates, x, v, z, and shall
suppose the solid to execute a small vibration, such that the displacement of the
element initially at , ¥, z has components, &, , {. The component of displacement
along the radius will be denoted by u and the cubical dilatation by A, so that

—1 . Gy D e
"= '/'(fw+ny+&)’ A_da; dg/+clz

§ 6. After displacement the density at @, v, z is

— 2 (68) = 5 (o) = 1, (p0)

or, since p is a function of 7 only,
dp
p— Ap —u ar

Hence the gravitational potential at x, y, z is changed by displacement from V
into V - K, where E is the potential of the following distribution of matter :—

(1.) A volume distribution of density
| /
Ap+u (),

dr

(ii.) A surface distribution of which the surface density is

wlpy=—p) - - . . o . . .. (),

this being taken over every surface at which the density changes abruptly, the change
being from p, to p, in crossing the surface in the direction of » increasing. In
particular this will occur at the outer surface of the solid, the value of p, in this case
being zero.*® ‘
§ 7. The potential at x, y, 2 after displacement being V — E, that at « + & y + ,
z 4+ { will be
v . av oV eV

) ok ol
‘—E—fg-ﬂég—lag—-.

* In the investigations on gravitating spheres given in Tronson and Tarr’s ¢ Natural Philosophy,’ the
course of procedure is tantamount to neglecting the volume distribution (4), and regarding E as the
potential of a surface distribution (5) alone. For this reason the result obtained differs from that of the
present paper. '
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STABILITY OF A GRAVITATING PLANKT. 161

Hence the force at @ 4+ & y + 7, z + { in the direction of @« increasing, found by
differentiating the foregoing expression with respect to §, is, neglecting squares of the
displacements,

b)

-~

VoL BV R
T +’78;a,,+gala pe v (O

b]

-

Let us suppose that, in addition to its own gravitation, the sphere is acted upon
by an external field of force of potential V, and let us, in the usual notation, denote
the six stresses by P, Q, R, 8, T, U. Then the equations of motion of the clement
ate+ &y + 24+ Lin the dlsplaced conﬁgm‘ation are three of the form

o £ ol or /OW W W W aE .
Poe = o + (/1/”7“}-8~ +r (8: + fa) +n810J+§8r87 5:0) ("),
W W

in which W=V 4 V., and all the terms such as =, =, ... are evaluated at
07 or > oz’

x, y, %, but p, P, Q... . are calculated in the displaced configuration at « + & v + 7,
z -+ L.

§ 8. Now the only case in which we have any accurate knowledge as to the values
of P, Q, R, S, T, Uis when the whole strain is small, z.c., when W is small. In the
case of the earth, V is not, in this sense, small.* The only way in which we can
proceed with any certainty is, therefore, by taking Vo= — V,or W = 0. That is
to say, we must artificially annul gravitation in the equilibrium configuration, so that
this equilibrium configuration may be completely unstressed, and each element of
matter be in its normal state. In this case it seems justifiable to suppose both the
density and rigidity to be constant throughout the sphere, and, indeed, it is only
with the help of this simplification that the equatious become at all manageable.

The vibrations of this system will be of two kinds. First there are * spherical”
vibrations in which the displacement is purely radial at every point, so that the solid
remains spherically symmetrical after displacement, and, secondly, there is the larger
class of vibrations in which the displacement is not of this simple type, so that the
displaced configuration is not one of’ spherical symmetry.

We hope, by discussing the vibrations of this system, to obtain some insight into
the corresponding vibrations of a natural non-homogeneous solid, say the earth. Now
it is extremely doubtful whether the spherical vibrations of our artificial system have
much in common with those of the natural system, but it will be seen later that this
is of no importance. We shall not be in any way concerned with these vibrations.
What we shall require is a knowledge of the unsymmetrical vibrations, and this, it is
hoped, can be obtained with fair accuracy from a consideration of the corresponding
vibrations in the artificial case. There must be some uncertainty even in the case of
unsymmetrical vibrations, and, unfortunately, this seems to be inevitable; our

* Lovy, ¢ Elasticity,’ 1., p. 220.
VOI. CClL.—-A., Y


http://rsta.royalsocietypublishing.org/

A
/A A
a

A

THE ROYAL |
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L\

[

/J
A

\

a

a ¥

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

162 MR. J. H. JEANS ON THE VIBRATIONS AND

artificial case appears to be the only case in which the equations can be solved by
ordinary analysis.

We now replace P, Q, R, S, T, U by their ordinarily assumed values, and equation
(7), putting W = 0, takes the form

g oA . ok
P g :(7\—}-”)5;—%—”‘725—[)% N )

and there are two similar equations for n,

The Principal Vibrations and Frequency Equations.

§ 9. Differentiate these three equations of motion with respect to @, ¥, z and add ;

then
d?*A g o ‘
Pap = (N + 2;1,)‘7 A—pVE . .. oL (9).

Now, from the definition of E, we have, in the case in which p is constant,
VI = —dmpA . . . oL (10),

and hence equation (9) becomes

d? '
pd;;:()\+2p,)V2A—l—477p2A N ¢ 0 ) )

If we suppose A proportional to cos pt, this equation assumes the form
(V24 «*) A = 0, where

o __ P(P* + 4mp) ;
K—_X+2M"..""’(12)'

There is, therefore, a particular solution of (11) of the form
A=r4,,(k)S, 0, $)cospt . . . . . . . (13),

where S, (0, ¢) is a surface harmonic of order 7, and the general solution found by
summation of solutions of this type is

A =33r"3,,,()S, (0, ) (Acos pt + Bsinpt) . . . . (14),

where the summation extends over all possible harmonics, and over all values of «.
It will appear later that each term in this solution can be made to satisfy the
boundary conditions, and, therefore, that each term represents a normal vibration.
The vibrations may, therefore, be classified into vibrations of order 0, 1, 2, &e., the
order being that of the harmonic which occurs in the expression for A. The vibrations
of order n = 0 are the spherical vibrations already referred to.
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STABILITY OF A GRAVITATING PLANET. 163

- We shall assume this provisionally, in order to avoid the continual repetition of
double summation, and now proceed to evaluate & %, { and to form the boundary:
equations for the simple vibration given by equation (13). '

§ 10. From equation (8) it appears that the displacement £ is given by

9 : 0A oE .

The solution is

do :
§=%+§0 e e v e e e e -,(16)9.

where ¢ is any solution of
Pob+uVid=—NA+p)A+pE . . . . . . (17),
and &, is the most general solution of
P&+ Vi =0 . . . . L L L L. (18)

It can easily be verified that a solution of equation (17) is
1 /42
= 7(M~ﬁA-E> o)

There will be solutions for %, £ similar to (16), but the three solutions for & %, {
must be such that

£ | dy

d dé’ ‘ .
(zo+¢z//+ Coe e (20)

The left-hand member of (20) is, from (16),

(ZEU n
dr (Zy

’]C()
b

Vi + 0

+

and from (19) and (17), V3¢ = A.  Hence (20) is satisfied if -

d§, ‘777(» -+ ag, c
— ke —— A T FE— )
s (ZJ L= O . . . . (..,1),

’ . . 7 z
§ 11. Write w for ~-~~e’5+ T =u|=- ~{ as before, and w, for —}w:fu + 7 7o+ L. Then
, ” ,
we shall verity that the solumons 101 u and u, are
= aS,, wy=o,S, . . . . . . . . (22),

in which «, &, are functions of 7, as yet unknown.
Assuming these solutions, the value of E, calculated as explained in § 6, is

47pS, 1 [ o ; . - ;
_—:————Zn_i-1 {?“.Ij +Jn+| (K'r) d1a+7zj +;Jn+% (m")dr+—c~b—;jloc“} . (23),

where «, denotes (a),.,
‘ Y 2
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164 MR, J. H. JEANS ON THE VIBRATIONS AND

We can calculate the value of the integrals which occur in this expression, and the
sum of the first two terms inside the curled brackets is found to be

In+1 _
ZE 0 (k)

it )
J” 3 (l&@)‘

a?t“

Hence we may write (19) in the form

47rpb,; "
(;[) e QESIL + (277; + ]_)27~ s 1 oy s

where

G=0Cri, (k) +Drd, (k). . . . . . . (24),

At 2 dmp L
C=-— Pp + T
D= 4778_,‘ —n+}

We now have, from equation (16),

d . darp d [ra,sS, . .
dz (ﬁsﬂ) ()n + 1) p? dr ! + & (23),
and hence
Ak dmpn iR,
U= -, - Ce (26,
" dr S, + 2n+ Dp* a~ + ty ( 6)

§ 12. There are three boundary-conditions to be satisfied, expressing that the
normal pressure and the two tangential tractions shall vanish at every point of the
free surface. As LamB* shows, these may Dbe represented by three symmetrical
equations, to be satisfied at the surface » = «, each of the type

d o, dE N
ArA ®o (irn) 4 p (\\1 o é‘) = (.

/
7

Substituting for € and » from (25) and (26) this becomes

dr dr

1/ dey 1 d d ey
NAL A+ /L[( ( = f'bn) o (, (&3,) — -~ (&’Ebu)J

drp (20— 2) d [1ra,S,
i e

On b 1) e | e ] T { ) oy, = )} =0 )
§ 13. Writo

A
;W.( 7IS ) — i lw, ;J': (,rw(iH'])Sﬂ) — 7,.-(n+2)x-

dr
so that the ught -hand members are solid harmonics of degrees n — 1 and —(n + 2);
then
* Lass, loc, cit, ante, p. 191,
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STABILITY OF A GRAVITATING PLANET, 165
r
= gyl =X

fl ; 1 —~(n o B (l —n
({; ,(f(?‘) Sllv} = 2’fl/+ 1 { ¢ +1)_(7 +l.f> ©w =7 (7; (" /)X}

From thess identities it is clear that if the terms in (27) which do not depend on
&, or 1, are expanded in spherical harmonics, they will contain no harmonics other
than o and x. We therefore see that the form of & may be assumed to be

=Po+@Qx. . . . . . ... (28),
where P and @ are functions of . The value of u,, is
wp=@P~@+H@Q)S, . . . . . . (29),

whence

qy=mP—-(+1)Q. . . . . . . . . (30).

§ 14. Substituting for & in (27) and equating the coefficients of o and y, we obtain
the two following equations Wthh must be satisfied at r = ¢ :—

AT, (k) 1 d ddx ( d d
AT dagy 6T) L e e 28 LA =i L
w1 Tag {" dr <7 dr > T\ [>< a6 )}

\
%EPQ” TA?J} ]_ ot = (1) d W2 ’QB
(277/ -+ 1)2)3 <L> %a + 2n + ]_ d,) 7 aO) + 1g =0 - (31),

a dr

and a second equation of a similar kind, of which the first line can be obtained from
the first line of the above by writing — (n + 1) for n, and the second line is

1 d
— Z,;_i:]_ s El; ( ( l)ao) _+ ’)’ p o @ ., (32)'

dr

The expression which occurs in curled brackets in (31) can be transformed into
{ d {
2 e (R 00 § R ¢ e ! 5 —_ R CER)] &
{ e <; = (1 QH)/ w 0 (&) ... (33),
while the corresponding expression in (32) is seen to be
., d /1 d ’ d
2 4 g2 ey pn y SR LY 4
{ @&&ﬁ @»+Ow+ﬂwm0 @% C oL (34)

From the value of &, given by equation (24)

E

G 41 (g it l ) 2n
o (&) = Crr* 4, _, (k1) + (2n 4 1) Dr*d,, (ka),

7 :
2(2; (r7&) = — Crr= 0] (rer).
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166 MR. J. H. JEANS ON THE VIBRATIONS AND

Hence expression (33) becomes
2 {0, _, (kr) — nCrr™3J,_, (k) 4 (200 + 1) (n — 1) Dr"'J, _, (ka)},
of which the value at » = « is
0, = 2a*Ck’J,_; (k) + 2[(2nn + 1) (n — 1) D"t — naCk]J,_, (ka).
This 1s the value at » = a of the term which occurs in curled brackets in

equation (31). The value of the similar term in (32), namely expression (34), is seen
to be

0, = QQ%CKEJib+% (Ka/) — 2 (n + 1)a %(}KJzH-{;« (Ka) o (35)
Write
o =0, +;>: @ (k) .. L (36),
x e
V=240, + h ad, (k) o0 oL (87),

then equations (31) and (32) become, at » = «,

darp (20 — 2 oy /o d3P )
T e wen l a)  uk ) (R =) =0 (o)
d . o/ A ' ¢
Vta (r Ve — (20 4 1) KT S i @’) =0. . . . . . . (39
Now we have, from equation (26),
A€k darpn
Fo = (rh Jreua + 20+ 1) 7 e+ (o)<

Write
o= — lv‘pu - PR A1)
R (J/L +1 ]r (2 -k ])/r — 47Tp1b
then this last equation becomes

O
o, = ¢| oy + [) .
ar Jr.a

Now, at » = «,

- i il )
D I <l ) B ()l, “}- .,,/) Gy == 0 ;:/;Fa

(( / l/,(
« dr (} '(”’""au) = — (-t ,l) T S

and cquations (38) and (39) become

dmp (2n —

a+ »

Dy + ) (o Dy — G Gk (R =) =0 L (40,

-(n+1)a0+a52——— (2n +1)<q‘~@3 @>:o. C (41,

in which 7 must be put equal to «.
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STABILITY OF A GRAVITATING PLANET. 167

§ 15. Now £ is known to be a solution of equation (18), and hence, from equation
(28), we may assume

P =P, (hr), Q = Qg (b)),
where
W=ppw . . . . . . . . . (42)
It follows that at » = a we may write
d
o) = AP, = pa,
where
) d N
A=a— log (), (ha))y . . . . . . . . (43),
B = a[;i log (™, (ha)) . . . . . . . . (44)

Hence, from (30), we have at » = a,

a@f—’—-uAQB—-(n—Q—])B@ Co. .. ... (45).

Lastly, we have from (28)
w — (l il i+ 2 (l —(n
fn = iBT_ n=l r7;: (7" Sn) + QB?" + ;7’; (7“ ( H)S,,,).

In order that (21) may be satisfied, we must have

l d 2 2 (n+2
(%7: By = (@ N+ e =0 . . . . (46).
Substituting for 3 and @, we find that this is satisfied for all values of » if
P+ 4+ 1)@ =0 . . . . . . L (47),
1.e., 1f we have, at » = «,
Q=0p. . . . . . . . . . . (48),
where
f=— " el (49),

w4+ 1 Tn_§ (]/rc)

Equations (40) and (41) now assume the forms

@+ A T [T (o (1)) (02— 1) (074 0 42)

+(3n+].)A—(n+].)B0}=O. L (50),
V4+Pr—nP+@n*+20)0+nA —Bn42)Bo=0. . . (51),

in which » must be put equal to a.

The general frequency equation may be found at once by the elimination of P, the
values of @ and ¥ being given by equations (36) and (37).
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168 MR. J. H. JEANS ON THE VIBRATIONS AND

Points of Bifurcation.

§ 16. The interest of the question lies in the position of the points of bifurcation ;
to find these we must put p? = 0 in the frequency equation. The reason why it was
not possible to put p® = 0 at an earlier stage will be understood by those who have
read the former paper “On the Stability of a Spherical Nebula.” In the present
instance 1t 1s, perhaps, sufficient to say that putting p* = 0 at an earlier stage would
have led to an entirely misleading result. Upon putting 2? = 0 in equations (50)
and (51) we find that the two brackets multiplying 3 vanish, and we therefore sce
that 99 must be treated as an infinite quantity of the order of 1/p%

IExpanding these brackets as far as p?, and then putting p® = 0, we find that the
two equations become

o =Py, =0. . . . (52), 4Py, =0 o (53),
where

lTrp()/L — 2)e d(ﬁ" e
=u+ i ar’ vy =¥,
TR T N R
Yo = Inmrp (2n + 1)()n F3) T 2t D)

(/9

?/2 — p[, 7

w22+ 1) (2n + 3)
The equation giving points of bifurcation is, of course
> L ) bl

ey, Fay, =0 . . . . . . . . . (b4).
Thé values of x; and x, are found, after some simplification, to be

(n—1) (Zn+1) d

n da

) = EcﬁJnM (ka) 4 2C {cﬁ’k‘?Jn_;} (kat) —na™d,  (ka) — (atd, (K@})}

2o=D@ED g k). . (59),

nK

+
2y = zai.},ﬂ,; (ka) 4 2220, (k) — 2 (04 1) a~'Cued s (ka) . . (56).

: . 1 . .
Now, it has already been seen that C = — = (p. 164). If we substitute this value

for C, write z for o, and simplify equations (55) and (56) as far as possible, we have

xa Tt =

A+ 2 22 + 13 (n— 1) 9 (n—1)(3n + 2) _
T (@ T (w Joon(@) . (57),
L () + () — (@) . (57)

na’ nr

P

A+ 20 o 2(n+ 2
gt = "'“.J,,H%(ac)—i%—m)J,Hg(x). R 1))
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STABILITY OF A GRAVITATING PLANET. 1G9

while the value of y, and %, may be written in the form

a? [ 403 + 200 + 21n + 7 2 —1D) 2un 4+ 1) pu
?/], = B_—; - ¢ o + ( Q 9” . (59))
i (2n + 1) (2n + 2) (20 + 3) na A+ 20
P . .. (60).

=05 ) @t )

The equation giving points of bifurcation can now be found by substituting these
values in equation (54).

§ 17. This equation will have roots corresponding to the different integral values of
n, n=20, 1, 2...; these determine points of bifurcation such that the critical
vibrations are of orders n = 0, 1, 2. . . respectively.

Of these the points of bifurcation of zero order are of no importance. The reason
is exactly similar to that given in the case of a spherical nebula (§28 of the paper
alveady quoted), namely, that a point of bifurcation of order n = 0 does not indicate
a departure from the spherical shape. We therefore will only discuss values of n
different from zero.

Case of p = 0.

§ 18. Before discussing the general form assumed by equation (54), it will be well
to consider the simple case of p = 0. Putting p = 0, we obtain trom cquations (57
I 5 ) _

and (58)
Mbwo
"

X =, ad,y, (x).

Referring to equations (52) and (53) we see that the cquation giving points of
bifurcation is
J,,,_}_% (:JG) =0 . . . . . N PN . (6]).
The lowest roots of various orders other than zero are
n =1, 2, 3, 4, D,
@ = 449, 576, 698, 818, 937, &e.,

the roots continually increasing with %, Thus the first point of bifurcation is given
by @ = 449, and the critical vibration is of order n = 1.

Cuase of w Different from Zero.

§ 19. The general equation in which p is not put equal to zero is much more
complicated than equation (61), which has just been considered. If we write u, for
Juyy ()/d,_; (), it will be seen that the equation giving points of bifurcation of order
n is of the form

w, 4, = an algebraic function of @ and of (A 4 2u)/u.

VOL. CCL—A. Z
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170 MR. J. H. JEANS ON THE VIBRATIONS AND

To obtain approximate numerical solutions, my plan has been to draw graphs of
the functions u,, and in this way obtain a graphical solution of the equations for
different values of u. There is no difficulty in drawing graphs of the functions u, ;
these are trigonometrical functions, and we have

1
U= = cot x,

while the successive u’s ave counected by the relation
2n 4 1 1

1 — -
Upp1 = — u
ly

To save space 1 have suppressed all details of this somewhat tedious part of the
work,  The results for n = 1, 2, 3 are given in the following table :—

Lowest Values of a.

p=0 p=4A, p=A\
n=1 449 4-2 4+0
=2 5-76 56 54
n=3 6-98 68 67

For large values of n it will be found that equation (54) reduces approximately to
x, = 0, and hence that for any value of u the lowest value of w is slightly less than
the corresponding value in the case in which p = 0.

The First Point of Bifurcation.

§ 20. Tt therefore appears that the first point of bifurcation may be safely assumed
to be of order n = 1. The value of « for which it occurs will have some value
between 4°0 and 4°49, according to the value of /. Now & = ka, and the value of
k? is dmp?/(M + 2p).  Hence the first point of bifurcation is approximately given by

dmpta® _ {4'00‘2 = 16°00, when p = \,
M2 [4:49% = 20716, when p = 0.
In equation (3) we supposed this point of bifurcation to be given by
VP Ny = .
In owr present analysis we have already taken y = 1; if we take (A 4 2p) to be
identical with our former N, we see that the actual values of ¢ are roughly
¢ = 160, when p = 0, ¢ = 127, when p == \*

* Tt will be found that the first point of Dbifurcation is given, with great accuracy, by the single
equation p%?/(A+7Tp)=16 for all values of p between 0 and A, This is of interest, as showing the
relative importance of A and p in maintaining stability., As might be foreseen, the importance of p
relatively to A increases as n increases, and for n= 0, the factor A+ %p must be replaced by A+ 2p.
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STABILITY OF A GRAVITATING PLANET. 171

We have now found a closer approximation to the value of ¢ than that which was
given in § 3, and have obtained the additional information that instability first enters
through a vibration of order n = 1. It must, however, be borne in mind that these
results are only true of the special and somewhat artificial case specified in § 8.

Comparison with the Case of a Spherical Nebula.

§ 21. It will be seen that the general argument of § 3 will apply to the case of a
gaseous planet or nebula if \ be taken to mean the pressure in the gas. In this case,
however, the laws of distribution of density and pressure are not independent. If
the gas is in conductive equilibrium throughout, the planet or nebula must be
supposed to extend to infinity, and for these conditions the criterion of stability
was worked out in the former paper already referred to. Calling the elasticity
of the gas k, the first point of bifurcation was found to be reached when the function
L

the mean density, so that writing a for the radius of the nebula, and \; for the mean
pressure (A, = kp,), we have, at this first point of bifurcation

2mpr?

attains a certain finite value. Now L p vanishes in comparison with p,,
=00

2up /Ny = .

Comparing this with the general result obtained in § 3, we see that in this extreme
case the value of ¢ becomes infinite. This result is only of importance to the present
investigation as showing the tendency of a concentration of density about the centre.
It seems to show that as the density becomes more concentrated about the centre,
the value of ¢ may be expected to increase. Ve are therefore led to expeet that in
general ¢ will have a value rather greater than that found for it upon the assumption
of homogeneity of density.

REcAPITULATION AND DiscussioN oF REsurts.

§ 22. Tt will be well to recapitulate our results before attempting to draw any
deductions from them.

We consider a spherically symmetrical mass of solid, liquid, or gaseous matter.
We denote the radius of this by @, the mean density by p,, and the mean value of X
by \,, where X denotes an elastic constant or the pressure of the fluid, according as
the matter is solid or fluid. We have seen that the stability of this dynamical system
depends upon the value of the function yp,*a®/\,, a pure number. When y =0 (i.e.,
when we deal with artificial matter which is totally devoid of gravitation) there can
be no doubt that the system is stable. We have seen that a point of bifurcation
occurs when the number ypa?/A, has a certain value ¢. It has not been proved in
the present paper that an exchange of stabilities accompanies this point of bifurcation,

%2


http://rsta.royalsocietypublishing.org/

N

a
-

I ¥
L A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

172 ‘ MR. J. H. JEANS ON THE VIBRATIONS AND

but it will be seen that, with slight alterations, the proof of the exchange of stabilities
for the spherical nebula, which was given in § 28 of the earlier paper, can be made to
apply to the present case. Admitting this, it appears that the spherical system
which is at present under discussion will be stable so long as yp,2a*/\, is less than ¢,
and becomes unstable so soon as yp,2a?/\, exceeds ¢.

§ 23. The next question is as to the exact value of ¢, and as to the vibration through
which instability enters at the point of bifurcation. To the first part of the question
we have not been able to obtain a very definite answer. This matters the less, since
the numerical data which would have to be used in making any applications of our
results are not themselves very definite. On the whole, the uncertainty in the value
of ¢ is not much greater than the uncertainty in the value of the numerical data (or,
what comes to the same thing for our present purpose, the uncertainty in our
knowledge of the law of compressibility and distribution of density in the planets of
our system).

The general argument of § 3 showed that ¢ must, except in extreme cases, be
comparable with unity. We then examined an artificial case: a planet in which the
density and elasticity were constant throughout—this system being made mechanically
possible by introducing an external field of force, of amount just sufficient to annul
gravitation in the equilibrium configuration. For this system p, was, of course,
taken equal to p, the uniform density, and A, was taken to be equal to X 4+ 2u in the
notation of LoVE, or m + n in the notation of THomsox and Tarr. The value of ¢
depends, of course, on the ratio u/A or n/m. For u/N =0 we found ¢ = 16; for
p/A =1 we found ¢ = 127 ; for intermediate value of u/\ we saw that the value of ¢
was intermediate between these two values.

The planets to which we wish to apply our results do not possess uniform density :
it is almost certain that in every case the mean density is much greater than the
surface density. The general argument of §38 shows that there is still a point of
bifurcation corresponding to a value of ¢ which is comparable with unity, but affords
no evidence as to the change which a concentration of density will effect in the value
of ¢. We therefore examined a case in which there is an infinite concentration of
density—the case of a spherical nebula extending to infinity—and found that in this
extreme case the value of ¢ becomes infinite. It therefore seems probable that a
concentration of density is attended by an increase in the value of ¢. As a working
hypothesis we shall assume for the planets of the solar system the uniform value

= 2. It must be left to the reader to form a judgment as to the amount of error
involved in this assumption, but it will, perhaps, be admitted that results depending
upon it will at least be right as regards order of magnitude. Tt will be seen later
that considerable variation in the value of ¢ is possible before the astronomical
evidence which we are going to bring forward is seriously invalidated.

§ 24. As regards the nature of the vibration through which instability of the
spherical configuration enters, we are able to come to a more definite conclusion, In
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STABILITY OF A GRAVITATING PLANET. 173

each of the cases referred to in the last section this vibration is found to be one of
order n = 1, w.e., one in which the displacement at every point is proportional to the
first harmonic. This is the result which we should naturally expect—just as we
expect a mass of liquid to become unstable through long surface waves sooner than
through short ones. We shall, therefore, suppose it to be true of the planets in
general. It is conceivable that planets could be artificially constructed for which this
assumption would not be true, but, at present, since we have not a complete
knowledge of the structure of the planets and are therefore compelled to make some
assumptions, it seems as if the assumption just made is far and away the best to take
as a working hypothesis.

ArrricamioNn To THE NEBULAR Hyrormrss,
Theoretical Conclusions.

§ 25. In the former paper, already referred to, the suggestion has been put forward
that the instability of a nebula, sun or planet, which, upon the nebular hypothesis, is
supposed ultimately to result in the ejection of a satellite, may be largely brought
about by a gravitational tendency to instability of the kind we have been investi-
gating. Let us, for the moment, take an extreme hypothesis, and imagine that this
agency is the preponderating agency, and that the rotational tendency to instability
may be disregarded in comparison.

Upon this hypothesis let us consider the case of an approximately spherical planet
or sun which is known to have thrown off a satellite. Before the ejection of this
satellite commenced, the primary mass would have an approximately spherical form,
for which pa?/\, would be below the critical value ¢. When this critical value is
reached, a divergence from the spherical form occurs, and a series of new processes
begins. We are not now concerned with the details of these processes, but they
must be supposed ultimately to result in the ejection of a satellite. It must be
noticed that we are not supposing the primary to be devoid of rotation—for this
would be inconsistent with the ejection of a satellite—but are supposing the rotation
to be so small that the rotational tendency to instability is small in comparison with
the gravitational.

If we suppose one or more satellites to have been ejected, and the primary to have
regained an approximately spherical form, the new value of p2a?/A, must be less
than ¢.  Now every satellite of which we have any knowledge, in our own system
at any rate, is small in comparison with the primary. A legitimate inference seems
to be that the ejection of a satellite is only a small part of the life-history of the
primary. We shall not, however, need to make any assumption so definite as this,
but shall suppose only that the values of py, a, \, for the primary after ejection are
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nearly equal (¢.c., equal, except for a multiplying factor of, say, 14 or 1) to the
values of the same quantities before the process of ejection commenced.

All this may be summed up, with sufficient accuracy for the present investigation,
in the statement that when the ejection of a satellite is taking place the value of
poia®/\, must be nearly equal to ¢.

Conclusions Tested by the Solar System.

§26. To a certain extent the solar system supplies material for testing this
conclusion.  Let p,, @ denote the present mean density and radius of any member of
the system which is known to have thrown off’ a satellite, and let X\, be the mean
value of N\, whether this denotes a pressure or an elastic constant, then we may

write
po*/Ny = O¢b.

At the time at which the satellite was ejected the same equation ought to hold
with 6 nearly equal to unity. Unfortunately we have no knowledge as to the
changes which will have taken place in p,, @, A, since the ejection of the last satellite.
We shall, for a rough approximation, neglect these changes altogether, take 8 = 1,
¢ = 2, and examine to what extent the equation

P(lﬁaz/)\ﬂ =2 L L oo e (62)

holds for the solar system as it now stands.
It will be remembered that there are three sources of error in this equation :—

(i.) We are neglecting the effect of rotation in bringing about the ejection of a
satellite.

(i.) We are neglecting the changes which have taken place since the ejection of
the last satellite.

(iii.) We are using an arbitrarily chosen value for ¢, and applying this to every
planet, while we know, from the difference in the physical constitutions of the planets,
that the value of ¢ must be different for each.

These three sources of error would each be serious if we were attempting to get
accurate results, but as our calculations are necessarily only of the roughest kind, we
may be content to neglect them.

§ 27. In the accompanying table the masses and radii of the sun, and of those
planets which possess satellites, are given in the first two columns; the value of
mass/(radius)® is given in the third. The units are so chosen that the earth is
measured by unity in each of these columns. Venus is included for the sake of
comparison, although the existence of a satellite is extremely doubtful,


http://rsta.royalsocietypublishing.org/

|
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

fa \

/,
/

S

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STABILITY OF A GRAVITATING PLANFT. i75

Calculated upon the hypothesis

Observed. of the present paper
(p=2).
(1) (2) (3) (4)
M Cocflicient A,.
. v ass Unit =101 absolute
Mass. Radius, (Radius)* = 10% grammes weight per
s(. centim.
San . . ... 315,000 109 26 2700
Venus . . 0-8 10 09 342
Earth 10 10 10 40
Mars oL 01 05 04 6
Jupiter . . . . 3000 11-0 25 250
Saturn . . . . - 900 9:0 11 5-0
Uranus . 14-0 40 09 3+2
Neptune 16-0 4-4 08 26

If our hypotheses give a fair account of the facts the numbers in this third column
will be proportional to »/Ap. Assuming for ¢ the uniform value ¢ =2, we can
calculate the actual values of X, and these are given in the fourth column,

§ 28. Knowing nothing about the variation in X, we shall be content as a
preliminary hypothesis to suppose it to have the same value for each planet.
Combining this with the hypotheses already formulated, we notice that +/Agp ought to
have the same value for each planet, as therefore ought also the tunction
mass/ (radius)?, which is tabulated in column (3).

It will be seen at once that there is a certain amount of uniformity about the
numbers in this column, but it requires some consideration to determine how much
significance is to be attached to this uniformity.

Now, apart from any hypothesis as to how the solar system originated or reached
its present configuration—i.e., regarding the solar system as a fortuitous collection of
bodies of varying sizes—we should expect the mean density to be greatest in the
greatest planets. We should, therefore, expect the quantity (mass)/(radius)® to be
more variable than the radius. In other words, we should, @ priori, expect less
uniformity in the third column than in the second. Judged by this criterion, the
uniformity of the numbers in the third column would be very siguificant. Further,
the variation in these numbers is of the kind we should expect. For instance, 1t is
known that the density of Jupiter is very much greater near the centre than near the
surface ; we should accordingly expect a large value of ¢, and therefore a large entry
in the third column, The same argument would apply to the Sun, but the physical
constitution of the Suw is probably so different trom that of the planets that there
could be no surprise at the Sun figuring as an exceptional case. Another exception
is that of Mars. Part of the diserepancy might, perhaps, be attributed to the
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smallness of the planet, but the figure in the fourth column would seem to suggest
that rotational instability must have played a large part in the creation of the
Martian satellites.

If, on the other hand, we begin by regarding the planets not as a fortuitous
collection of bodies, but as a series of satellites all ejected from the same primary, the
case 18 different. For here we should expect the smaller planets to have cooled more
than the heavier ones, and therefore to be at a lower temperature. Against this
must be set the fact that the heavier planets will probably have the greatest
concentration of density about the centre, and the greatest mean pressure.  The first
consideration tends to increase the value which we should expect for the mean
density of the smaller planets as compared with that of the greater ones; the second
consideration tends in the opposite direction. We can hardly profess to estimate the
relative weights of these two considerations with any approach to accuracy ; perhaps
it is best to revert to the argument given in the last paragraph, while bearing in
mind that the approximate equality of our numbers may become considerably less
significant as soon as the question of relative temperature is taken into account.

§ 29. We now consider the evidence afforded by the absolute value of our figures,
After allowing for the exceptional cases, it appears that the value of A, for the earth
and for most of the planets is about 4 X 10" In other words, if we suppose thesce
planets suddenly to resume the molten state, while retaining their present mass and
radius, the spherical form will be stable or unstable according as the mean value of
A+ 2p is greater or less than 4 X 10™.  In the molten state we may take p = 0,
and the value N = 4 X 10" corresponds to a value equal to about half of that of
steel, for which X == 83 X 10!, If, however, we attempt to trace the history of a
planet backward in time, we cannot suppose the mass and radius kept constant : the
mass may be constant, but the radius will increase.  Under these conditions we find
that the critical value of N, will be inversely proportional to the fourth power of the
radius, and will, therefore, be somewhat less than the value A = 4 x 10", Tt would
be extremely difficult to form a veliable estimate of what this corrected value for A
ought to be, and equally difficult to estimate what would be the actual value of \ for
molten material similar to that ot which owr planets must have been composed when
in the molten state. Our argument is that the two values of N ave at least of the
same order of magnitude, and probably equal, except for inaccuracies in our caleu-
lations.

Comparison of the Rotational and Gravitational Hypotheses.

§30. We may conclude this part of owr work by comparing two extreme
hypotheses : the first referring the phenomena of planetary evolution solely to
rotational, and the second solely to gravitational instability.

- Given the approximate values of A and p for a planet, and the fact that this
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STABILITY OF A GRAVITATING PLANET, 177

planet has thrown off’ a satellite, the former hypothesis leads to a certain inference as
to the angular momentum of the system; the latter to an inference as to the radius
of the primary. The former hypothesis leads to no inference at all as to the size of
planets which are to be expected-—they are as likely to be of the size of billiard balls
as of the size of the planets of our system—while the latter leads to no inference as
to the angular momentum of the system, but presupposes it to be small. The
contention of the present paper is that the inferences which are drawn from the
former hypothesis are not borne out by observations on the planets of our system,
while those which are drawn from the latter are borne out as closely as could be
expected. The true hypothesis must of necessity lie somewhere between the two
extremes which we are comparing, and our evidence seems to show that it is much
nearer to the latter (gravitational) than to the former (rotational).®

STRESSES AND VIBRATIONS IN THE KARTH.

§ 31. It has already been seen that in dealing with a gravitating sphere of the size
of the earth it is necessary to take into account terms which are omitted by Lord
Kerviy and others—the terms which introduce into our equations the gravitational
tendency to instability.

It is of some importance to know whether the existing solution for the vibrations
and displacements of the earth would be altered to an appreciable extent by the
inclusion of these terms. The general frequency-equation which is given on p. 167 is
too complicated for manipulation, and is, moreover, open to the objection that it does
not represent the facts of the case; for, inside the earth, the strains caused by
permanent gravitation cannot legitimately be treated as small.

§ 82. Considerations of a general nature will, however, give us some iusight into
the question. In an imaginary eavth, in which X, p are infinitely great, the
gravitational terms will be of no importance in comparison with those representing
the elastic stresses. The true solution will, therefore, become identical with the
classical solution in which the gravitational terms are neglected. For smaller values
of X, p the error will become appreciable, and it X, u continue to decrease this error
will become infinite as soon as the first point of bifurcation is reached ; for at a point
of bifurcation the application of an infinitesimally small external force will produce a
finite displacement in the solid. For intermediate values of A\, u the error will be
small if N, w are great compared with the critical values of X\, u at the point of
bifurcation, and great if A, 1 are near to these critical values.

* In addiden to the inference as to the size of the planets, the hypothesis of gravitational instability
leads to a further inference as to the distances of the fixed stars. This has been discussed in my former
paper, “On the Stability of a Spherical Nebula” (§48), and here also the results scem to agree with
observation as closely as could reasonably he expected.

T CHREE, ¢ Camb. Phil. Soc. Proc.,” vol. 14, or Lovz, ¢ Elasticity,’ vol. 1, p. 220,

VOL. CCT— A, 2 A
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178 MR. J. H. JEANS ON THE VIBRATIONS AND

§ 88. The most reliable evidence as to the actual values of X, u is to be obtained
from the phenomena of earthquake propagation.* From the * time curves” given in
the British Association Report presented at the 1902 meeting, there seems to be
little doubt that the so-called “large-waves” are propagated merely through a thin
crust on the earth’s surface, while the “preliminary tremor” is propagated in a
sensibly straight line through the earth itself. The average velocity of propagation
is found to be about 97 kiloms. per second, and this is independent of the length of
the path. The inference is that (A4 2u)/p is nearly constant throughout the earth’s
interior, and that its value is about (97 x 10%)* or 94 X 10" If we suppose the
mean value of p to be 5°5, this gives for the mean value of A 4 2u,

N Zp = 517 X 107

Now, the critical mean value of N+ 2p which corresponds to the fivst pomt of
bifurcation has already been seen to be about 4 X 10" It would, therefore, appear
that the error introduced in the classical solution for the displacements and stresses is
appreciable, although not great—it is probably comparable with the ervor to which
attention has already heen attracted by Crrmet '

Figure or 1ur Earr.
Theoretical Conclusions,

§ 34, From the evidence of the last section it will be seen that there is an over-
whelming probability that the values of the elastic constants of the earth are such
that a state of spherical symmetry would be one of stable equilibriun.

Whether or not the carth is at present in o state of spherical symmetry is a
different question; various indications and, i particular, the inequality in the
distribution of land between the two hemispheres of the globe suggest that it s
not so.

Now, even if the material of the earth is at the present moment of sufficient
strength to maintain a spherical configuration in spite ol the gravitational tendency
to instability, it does not seem probable that it has always been so. Looking back-
wards in time we must come to a stage in which the material of the earth was plastic,
and, further back still, fluid. At this time the value of X would be much smaller
than its present value, and, as already pointed out in § 29, would probably be about
equal to the eritical value for the planet at that period of its existence. There would,
therefore, seem to be a sufficient reason for considering the possibility that the earth,
at the moment at which consolidation set in, was not in o state of spherical symmetry.
Lot us examine some of the consequences of this conjecture.

* Professor MItNE has kindly assisted me in this guestion.
T Loc, cit, anie, ‘
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STABILITY OF A GRAVITATING PLANET, 179

It is easy to see that enormous stresses would be set up in the interior of the earth
after consolidation. An equilibrium. configuration depends in general upon the
compressibility of the material, and a configuration which was one of equilibrium for
the compressibility which obtained at the moment of solidification would not remain
so after the incompressibility and rigidity of the material had increased by cooling.
If we suppose the earth to cool in an unsymmetrical configuration the stresses set up
will soon become very great. In fact, Professor Darwix has shown that the stresses
which would be produced by the weights of our continents in an earth initially
homogeneous (i.c., by an irregularity of less than a thousandth part of the radius)
would be so great that the material would be near the breaking point.™

We must therefore suppose that as the earth cools and the elastic constants change
there will be a series of ruptures resulting from the stresses set up in the interior.
The configuration will become approximately spherical (spheroidal if rotation is taken
into account) as soon as the point of bifurcation is passed.

The fact that the ultimate configuration is reached only as the result of a long
succession of ruptures puts the whole question outside the range of exact mathe-
matical treatment.  We can, however, see that the final configuration (disregarding
rotation) will probably not be quite spherical, but will retain traces of the initial
unsymmetrical configuration.

§ 35. Before we can attempt to decide whether or not the earth shows traces of a
process such as that just described, it will be necessary to form some idea of the
unsymmetrical configuration with which the process must have begun. We cannot
accurately calculate the “ linear series” of unsymmetrical configurations except in the
immediate neighbourhood of the point of bifurcation. Near to this point the
configuration is spherical except for terms proportional to the first harmonic. The
free surface will, therefore, be strictly spherical, and it will, of course, be an equi-
potential, but its centre will not coincide with the centres of other surfaces of equal
potential. If we suppose a fluid mass of this kind to solidify, and then to shrink by
cooling, the shrinking being accompanied by a series of ruptures of the kind already
explained, we can easily imagine that the free surface would retain an approximately
spherical form, but that when the final state is reached this surface would not be
quite an equipotential, and the centre of gravity would not quite coincide with the
centre of figure. If water is placed on the surface of a planet of this kind, it will
form a circular sea, of which the centre will be on the axis of harmonics, while the
dry land will form a spherical cap.

Tvidence from the Distribution of Seas and Land.
§ 36. Now this is not observed on the earth, and it could not be expected, since we
have ignored all the agencies which have contributed to the figure of the earth,

* ¢Phil. Trans.,” vol. 173, 1882, p. 187.
’ 2 A2
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180 MR. J. H. JEANS ON THE VIBRATIONS AND

except the one with which this paper is specially concerned. The question is not
whether we observe the state just described, but whether we can detect any approach
to this state, and this, I believe, can be done. Professor DARWIN writes™® :—

“It is well known that the earth may be divided into two hemispheres, one of
which consists almost entirely of land and the other of sea.  If the south of England
be taken as the pole of a hemisphere, it will be found that almost the whole of the
land, excepting Australia, lies in that hemisphere, whilst the antipodal hemisphere
consists almost entirely of sea. This proves that the centre of gravity of the earth’s
mass is more remote from England than the centre of figure of the solid globe. A
deformation of this kind is expressed by a surface harmonic of the first order.”

§ 37. We can carry our calculations a step further. The divergence from the
initial configuration is only represented by a first harmonic so long as squares of this
divergence may be nsglected. If these sjuares are taken into account, we must

««*""‘"“‘“\\\

LAND  Hepy, \
Sp
& e

e

AUSTRALIA

Fig. 1.

include a term proportional to the second harmonic as well as that proportional to
the first. This process of successive approximation might be continued to any extent,
so that a complete series of unsymmetrical configurations might be calculated in the
manner explained in my former paper.t We may, however, be content to stop at
the second harmonic. The free surface will now be of the form

= (. H. Darwiy, ¢ Phil. Trans.,” vol. 173, 1882, p. 230.

t ¢ Phil. Trans.,” A, vol. 199, p. 41.
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STABILITY OF A GRAVITATING PLANET. 181
r=a,+ P, +aly, .. . . . . L (63),

and we therefore examine whether any traces of the second harmonic term can be
found in the earth’s surface. Now, if we take «, positive in equation (63), the
equation is that of the pear-shaped curve which was found on p. 46 of this earlier
paper. This differs from the spherical shape mainly in possessing a protuberance—
the stalk end of the pear—of which the centre is on the axis of harmonics. Traces
of this protuberance may, I think, perhaps be found in the Australian continent, the
arrangement being that shown in fig. 1. It is true that the centre of Australia does
not coincide with the antipodes of England, but the diserepancy becomes less when
we take into account the enormous region of ocean shallows which lies to the east of
Australia.

[ *The discrepancy can be further reduced by taking the rotation of the earth into
account.  When the rotation of the earth was greater than at present the ellipticity
of the eartl’s surface would be greater, and the transition from this to the present
ellipticity would take place through a series of ruptures similar to those already
described.  The rotation (assumed small) of the pear can be allowed for by adding a
term — BP, to the right-hand side of equation (63), this representing a second
harmonic deformation having the axis of rotation for axis of harmonies.

The present rotation of the earth can similarly be represented by a term — 8P,
where 6" < B. The equation to the present surface of the sea may accordingly be
taken to be

— (‘/U — 18/1)/2’

and hence the height above the present sea-level of the surface of the primeeval
rotating pear, if restored, would be

(19 = ') + P+ «,Py — (B — B) P,

It will be found that the effect of the rotational term (8 — B8) P, is to move the
theoretically predicted Australia nearer to the equator of the earth, and to change its
shape from a spherical cap to a sphero-conic. ]

Again, we should expect the highest land to be on the axis of harmonies, and,
therefore, in or near Iingland. Here, again, the agreement of facts with theory
might be closer if we could suppose the continent, which geology shows to have
existed at one time in mid-Atlantic, to be restored to its former position. But the
agreement of facts with theory can only be expected to be of the roughest kind, and
we must always bear in mind that our theory does not lead us to expect that the
present figure of the earth will be pear-shaped, but only that it will resemble a pear
disfigured by a long series of ruptures.

¥ Added January 3, 1903. 1 am indebted to the referee for suggesting this addition.
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182 MR. J. H. JEANS ON THE VIBRATIONS AND

Lndence from the Distribution of FEarthquake Centres.

§ 38. It can be seen that the earthquake regions of the world have a veference, as
regards their distribution on the earth’s surface, to this pear-shaped figure, and this,
again, must be considered as evidence.

Let us first examine the facts. Miixe divides the earthquake-areas of the globe
into twelve distinet regions, and a map of these is given in the ¢ British Association
Report” for 1902.%  These regions are given in the following table. The first figure
denotes the number of large earthquakes which have occurred in these regions in the
three years 1899-1901. The earthquakes from the three regions printed in italics
were small in comparison with the others. In the last column is given the
approximate latitude of the centre of each region, referved to Greenwich as pole (the
latitude of Greenwich being taken to be 4 90°).

TasrLu of Harthquake Regions.

A 25 Alaskan + fO (€ 17 Mauritian + 1"0
B 14 Cordillerean 0 1 22 N Atlantic + 79
C 16 Antillean + 25 / 3 N, + 0
D 12 Andean 0 J 3 N. ' +70
D) 29 Japanese -5 K 14 Asiatic + 45
F 41 Javan - 925 L 2 Antarctic [small]

Now, it will be at once noticed that for most of these regions the latitude is small.
If we weight the regions according to the corresponding number of earthquakes,
giving half-weight to the small earthquakes in regions H, I, J, we find as the mean
of the numerical values of the latitude about 20°, whereas if the regions were
distributed at random we should expect the mean latitude to be (37 — 1) radians, or
about 33°. We therefore see that the earthquake regions tend to lie near the
equator of our pear. The evidence can be put in a more striking way as follows :—
Exactly half of the surface of the globe is of a latitude less than 30°  The half for
which the latitude is less than 30°, measured from Greenwich as pole, was responsible
for 156 earthquakes; the remaining half was responsible only for 42, of which 28
‘were the small earthquakes from regions H, I, J.  There is, therefore, no doubt that
the principal earthquakes tend to emanate from points near to the equator of the
supposed pear.

Now, if we look back to fig. 1, we see that this is equivalent to saying that earth-
.quakes occur where the “slope” in the figure of the earth is steepest. This conclusion
is the same as that to which the British Association Committee were led from a

* ¢ Brit. Assoc., 72nd Report,” Belfast, 1902, ¢ Seismological Investigations,” p. 4.
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STABILITY OF A GRAVITATING PLANET. i83

consideration of the actual figure of the earth, and it is that which might naturally
be expected. The theory put forward in this paper may, perhaps, suggest a reason
why these regions should lie approximately on a great circle of the earth, and why

this great circle should approximately divide the earth into two hemispheres of sea
and land.

Summaonry and Conclusion.

- §39. In conclusion it may be well to summarise those parts of the paper which
refer to the figure of the earth.

We saw that at the moment of solidification the earth might be either spherical
(except in so far as it was deformed by its rotation) or pear-shaped. Our theoretical
calculations and our knowledge of the constants of the earth at the time of solidi-
fication were mnot sufliciently accirate to enable us to decide which of the two
alternatives is the more probable. The shape of the earth, whether spherical or pear-
shaped, could not be maintained long against the enormous strains which would be
set up i the carth as the process of cooling proceeded, und this shape would gradually
give place to an approximately spherical shape, the change in shape being produced
by a long succession of ruptures. The suggestion of this paper is that the earth, in
spite of this series of ruptures, still shows traces of a pear-shaped configuration.
Such a configuration would possess a single axis of symmetry, and this, it is suggested,
18 an axis which meets the earth’s surface somewhere in the neighbourhood of
England (or, possibly, some hundreds of miles to the S.W. of England).  Starting
from England we have in the first place a hemisphere which is practically all land ;
this would be the blunt end of owr pear. ~ Bounding this hemisphere we have a great
circle of which England is the pole, and it is over this circle that earthquakes and
volcanoes are of most frequent occurrence. If we suppose our pear contracting to a
spherical shape we notice that it would probably he in the neighbourhood of its
equator that the change in cuwrvature and the relative displacements would be
greatest, and hence we should expect to find earthquakes and voleanoes in greatest
numbers near to this circle. Passing still further from England we come to a great
region of deep seas—the Pacific Ocean, the South Atlantic Ocean, and the Indian
Ocean : these may mark the place where the “waist” of the pear occurred. Lastly
we come, almost at the antipodes of England, to the Australian continent and the
shallow seas which lie to the east of it ; these may be the remains of the stalk-end of
the pear.

§ 40. It may, I am afraid, be thought that the hypotheses upon which the paper is
based are too speculative and the results, consequently, too uncertain. In defence it
may be said that the object of the paper is not so much to establish new doctrines as
to point out possibilities, and that these possibilities seem to be of such & kind that it
may be useful to keep them in mind in discussing questions connected with the figure
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184 ON THE VIBRATIONS AND STABILITY OF A GRAVITATING PLANET.

and structure of the earth, as well as the more general questions of planetary
evolution.

In conclusion I have to express my indebtedness to Professor G. H. Darwin and
Professor A. E H. Lovs for advice and assistance which 1 have received from them.

| Nore.—Added February 20th, 1903.  While the above paper was in the press,
Professor W. J. Sorras read a paper before the Geological Society in which the
Figure of the Farth was discussed from a geological standpoint. Professor Sornas
had arrived, from an examination of the geological features of the earth, at a
conclusion very similar to that to which I had been led from theoretical
considerations : he had detected an axis of symmetry, other than the axis of rotation,
in the earth’s figure, and expressed the opinion that “ the pear-shaped form, now that
it was pointed out, became obvious to mere ingpection : it was a geographical fact,
and not a speculation.”

The axis of Professor Sorras’ pear does not, however, coineide with that which I
tentatively put forward in the above paper, and the object of this note is to accept
the alteration suggested by his paper. The conclusion reached in his paper is that
the axis of symmetry of the pear-shaped figure passes through a point of latitude
and longitude about 6° N. by 30° &.  Thus Africa—the continent whose mean height
above sea-level is greatest—must be taken to be the centre of the  Land
Hemisphere ” in fig. 1 of my paper, while the protuberance which formed the stalk
of the pear is submerged in the Pacific Ocean, which now forms the “ Water
Hemisphere.”  Almost the only remaining evidence of the existence of this
protuberance is the fact that the axis of the pear coincides with the earth’s greatest
diameter.  The great circle of earthquake-centres suggested in § 38 of my paper is
to be replaced by the line of Pacific folding ; this approximately forms a small circle
(of radius about 80°) which almost coincides with the proposed great-circle in the
northern hemisphere.  Further details of Professor Sonnas’ view will be found in his
paper (““ The Figure of the Earth,” “ Quart. Jowrn. Geol. Soc.,” vol. lix., Part 2).

The fact that Africa is surrounded by a belt of seas. and this again by a belt of
land before the Pacific is veached, points perhaps to a bodily subsidence of the blunt
end of the pear, the cirele of fracture having possibly been the line of Pacific folding.
Such o fracture would, of cowrse, displace the centre of gravity of the pear, and
probably this would account not only for the feature just mentioned, but also for the
non-appearance of the protuberance. 1t will be noticed that the smallness of the
latitude of the extremities of the axis (6°) agrees well with the theory of planetary
evolution put forward in §§ 25-30 of the present paper. |



http://rsta.royalsocietypublishing.org/

